A new species of the Neotropical mimetic genus Cerichrestus Clark from Costa Rica (Coleoptera: Chrysomelidae: Alticinae): An example of how unknown is biodiversity

DAVID G. FURTH
National Museum of Natural History, Smithsonian Institution, Washington, DC, USA & Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel.
E-mail: furthd@si.edu

ABSTRACT
A new species (Cerichrestus freidbergi) of the mimetic Neotropical genus Cerichrestus Clark, 1860, is described from LaSelva Biological Station, Costa Rica. Most known species of this genus are from South America, C. clarki Jacoby has been the only species known from Central America (Panama and Costa Rica) and is the most morphologically similar to C. freidbergi. This new species differs significantly in color and pattern from C. clarki, but very unusually both male and female genitalia show little morphological differences. The article discusses potential mimetic relationships and provides a good example of how many animal taxa are poorly known.

KEYWORDS: Flea beetles, Batesian mimicry, Müllerian mimicry, Neotropical, Costa Rica, Choco, La Selva.

RESUMEN
Una especie nueva (Cerichrestus freidbergi) del género mimético neotropical Cerichrestus Clark, 1860, es descrita desde la Estación Biológica LaSelva, Costa Rica. La mayoría de las especies conocidas de este género son de América del Sur, C. clarki Jacoby ha sido la única especie conocida de América Central (Panamá y Costa Rica) y es la más morfológicamente similar a C. freidbergi. Esta especie nueva difiere significativamente en color y patrón de C. clarki, pero es muy inusual que los genitales masculinos y femeninos muestren pocas diferencias morfológicas. El artículo discute las posibles relaciones miméticas y proporciona un buen ejemplo de cuántos taxones animales son poco conocidos.

PALABRAS CLAVE: Alticinos, mimetismo batesiano, mimetismo mülleriano, Región Neotropical, Costa Rica, Chocó, La Selva.

INTRODUCTION
Clark (1860) described Cerichrestus with C. balyi Clark, 1860, from Brazil, as the type species. In the same publication, Clark described 10 species; all except C. apicalis Clark, from Colombia, and C. deyrollei Clark from French Guinea (Cayenne), were from Amazonas (Brazil). There were other species described in the genus, viz. C. thamni from Peru (Baly 1879) (Scherer 1962: 527, transferred this
to *Hypolampsis* Clark, 1860); *C. clarki* from Panama (Jacoby 1886); *C. allardi* from Peru (Duvivier 1889); *C. citrinus* from Guiana (Allard 1894); *C. apicatus* from Ecuador, *C. curvilinea* and *C. jacobyi* from Peru (Bowditch 1915). Since Bowditch (1915) no new species have been described. Another indication that this is a “forgotten” genus is that there are no literature citations for *Cerichrestus* since Bowditch (1915), except for in a few checklists mainly by Furth, and the only citations at all for this genus are the original descriptions of these 17 species. *Cerichrestus* was first recorded in Costa Rica in Furth *et al.* (2003). After almost 30 years collecting, surveying museum collections and analyzing the Alticinae fauna of Mexico, the author has not recorded any *Cerichrestus* there (Furth 2006). Thus, this genus is only known in Central America from Panama and Costa Rica. *Cerichrestus* belongs to the putative tribe/subtribe (depending on what higher classification one follows) Sphaeronychini or Monoplatini (see Furth 2007).

In 1985 the author had an opportunity to spend a month in primary rain forests of Choco, Colombia. From observations during this visit the principles of Batesian and Müllerian mimicry became very apparent to the author through evident mimicry rings involving Chrysomelidae (see Discussion below). Reports of potential mimicry rings involving multiple representatives of Chrysomelidae and other insects have been reported (Gahan 1891; Lindroth 1971; Hespenheide 1976; Balsbaugh 1988; Balsbaugh & Fauske 1991). Balsbaugh (1988) mentions some Chrysomelidae that are the probable models because they are toxic, such as Clytrinae, Galerucinae, Chrysonelinae (Paropsine leaf beetles), or because of sound production, behavior (e.g., Criocerinae) or presence of eyespots (e.g., Cassidinae).

By chance this study is also an example of how poorly known biological diversity is even at this point in our exploration of the planet. Namely, that this genus *Cerichrestus*, described by Clark in 1860 (currently with 18 recorded species, including the new species in this study) has not been studied at all beyond the original descriptions (1860–1915) despite the fact that at least some species are not rare in certain places. Certainly, this is not unique, i.e., there are many genera of animals especially insects, for which we only know their name and nothing else! We have no idea of their true distribution, biology or ecology, including food plants, biochemistry, closest relatives, genetics, etc. Therefore, despite all the discussions, analyses of species richness, phylogenetics, genomics, etc. of biological diversity, we actually know extremely little about the diversity of life on Earth.

MATERIALS AND METHODS

Most of the specimens cited in this publication were collected and prepared by the parataxonomists of the Arthropods of La Selva project (El Proyecto Artrópodos de La Selva, ALAS). They were collected at La Selva Biological Station (Heredia, Costa Rica) [10°26′N 84°01′W], it is a lowland tropical rainforest of about 1500 hectares with elevations from 50–150 meters with mostly second growth forest of various ages and abandoned pastures and a mean annual rainfall of 4000 mm.
Some specimens were also borrowed directly from the collections of the Instituto de Biodiversidad (INBio), San Jose, Costa Rica. All ALAS project specimens are part of the INBio collection. The holotype (not INBio bar coded) will be deposited at the United States National Museum of Natural History, Smithsonian Institution (USNM), as it was gifted to the author by the collector in the 1980s. The majority of the barcoded INBio/ALAS paratype specimens will be deposited at El Museo Nacional (MNCR), San Jose, Costa Rica, that has recently taken over all INBio collections. The remainder of the paratypes will be deposited at the USNM and a pair (male and female) at the Museo del Instituto de Zoologia Agricola, Maracay, Venezuela (MIZA), the Natural History Museum, London (NHM), and the Steinhardt Museum of Natural History of Tel Aviv University, Israel (SMNHTAU).

More details about the study site as well as details about the collecting techniques used by the ALAS Project, especially Malaise trapping, are given by Furth et al. (2003). A few specimens were collected and donated to the author by Henry Hespenheide (University of California Los Angeles, USA – UCLA). Almost all the specimens of *C. freidbergi* listed under the examined material have an INBio/ALAS bar code number (the bottom label), followed by the *verbatim* locality information including latitude and longitude, date, as well as data about collecting method (mostly Malaise traps), ecological data, etc.

In the material examined section, listed are only the INBio bar code numbers and the more specific second label data, because the locality data are essentially identical (La Selva Biological Station). A very few specimens either do not have a bar code or have a slightly different locality label, this will be indicated below the examined material (paratypes). Different labels are separated by a back slash (\); within a label different lines are separated by a comma (,). Each set of labels per specimen is separated with a period (.).

The images of the male and female genitalia of *C. freidbergi* and *C. clarki* were taken with Zeiss Axio Zoom V 16 scope and IAI.AT.200DE digital camera attached to it. The habitus images of *C. clarki* syntypes, *C. ?allardi*, Lycidae, and Lampyridae were taken with Visionary Digital™ BK Lab Imaging system outfitted with the Canon EOS 5D and a MP-E 65mm 1–5× Canon macro-lens. Stacked images were processed in part with Helicon Focus™; final editing was done with Adobe Photoshop™.

Measurements were made with a Leica M125 under 2.0× magnification using an Achromat 1.0× objective and Leica 25× oculars with a reticle. The reticle was divided into 120 parts and using a Zeiss stage micrometer the measurements were calculated as 1.0 mm = 30 parts/lines, or 0.1 mm equals 3 reticle parts/lines, and 1 line = 0.0333 mm. All measurements of *C. freidbergi* and *C. clarki* (listed under the *C. freidbergi* Diagnosis section below) were made using 10 males and 10 females of each. For the antennomeres, their lengths are given as the actual number of reticle lines at this magnification (i.e., 30 lines per mm) and the left antenna of each was used except in one case of *C. freidbergi* female where the right antennomeres
were measured. Measurements taken are as follows: IOD – inter-ocular distance (minimum/anterior), Lb – length of body (excluding antennae, from vertex to tip of abdomen not distended), Le – length of elytron, Lp – length of pronotum (in the middle), Weh – width at humerus, Wem – width at widest part of elytra, Weye – width of eye (measured across center), Wp – width of pronotum.

The author follows a less popular classification, i.e., Alticinae rather than Alticini, the rationale for this is explained elsewhere (e.g., Furth & Lee 2000; Furth & Suzuki 1998; Mohamedsaid & Furth 2011).

TAXONOMY
Genus Cerichrestus Clark, 1860
Cerichrestus freidbergi n. sp.
(Figs 1–6, 13)

Etymology: This new species of Cerichrestus is named in honor of Dr. Amnon Freidberg (Curator Emeritus of Entomology, SMNHTAU) for his 75th birthday. Probably a majority of the specimens in the SMNHTAU insect collections were collected by Dr. Freidberg. He has been a close colleague of mine since we met in the summer of 1971. We have been together on many field collecting trips all over Israel and adjacent territories. Although he is a Dipterist, we still find many things in common to discuss.

Diagnosis: Cerichrestus freidbergi n. sp. is morphologically most similar to C. clarki Jacoby, 1886, recorded from Panama and Costa Rica, and the only species recorded outside South America. The new species differs from C. clarki primarily through color and pattern (Figs 1, 7). Cerichrestus clarki has an elytral black pattern slightly tapered towards elytral base (Figs 7, 13) with a broad median stripe/spot on the apical half (approximately from the suture to stria 7 laterally), a very narrow black stripe along the suture (one stria wide only) to the base then continuing onto the pronotum as a black, median, parallel-sided stripe (equal in width to ca. 3–4 elytral striae), the pronotal stripe is somewhat narrower at the base than apex, i.e., slightly tapered towards the base (not created by arrangement of pubescence). In C. freidbergi, the pronotal stripe is lighter in color, hour-glass-shaped and created by the arrangement of pubescence. Other color differences: C. clarki often has some of the medial area of the thoracic venter lighter in color (orange) whereas C. freidbergi usually has the all-dark thoracic venter; the fore and mid-tibiae of C. clarki are usually all dark, whereas C. freidbergi usually has the fore and middle tibiae lighter, at least partly yellow. Cerichrestus clarki has slightly elevated elytral calli/bossae (mid-basal elevated area, between striae 1–3) giving the appearance of a depressed
area near the suture. The pronotal lateral margins of *C. clarki* are straight-sided, whereas *C. freidbergi* has an apparent bulge in the middle of the lateral margins; the anterolateral angles of *C. clarki* are not pointed forward, whereas *C. freidbergi* has distinct and forwardly pointed anterolateral angles. The new species is larger for most body parts, e.g., the Lb (average) of *C. freidbergi* in males 5.02 mm and females 5.68 mm, whereas in *C. clarki* the Lb (average) in males 4.75 mm and females 5.15 mm (see also measurements for *C. clarki* below). There are no apparent significant morphological differences between *C. freidbergi* and *C. clarki* concerning the male aedeagus, female spermatheca, or female vaginal palpi.

Cerichrestus clarki (Figs 7, 8, 9, 10, 11–13):

Antennomere (#) average lengths: Male #1(11), #2(6), #3(13), #4(12), #5(12), #6(11), #7(11), #8(9), #9(9), #10(8), #11(11). Female #1(11), #2(6), #3(13), #4(12), #5(11), #6(10), #7(10), #8(8), #9(8), #10(8), #11(11).

Body part measurements (10 males, 10 females; range in mm [average]): Lb: males 3.86–5.66 [4.75], females 4.73–6.13 [5.15]; Le: males 3.00–4.16 [3.54], females 3.50–4.50 [3.77]; Weh: males 1.50–1.73 [1.70], females 1.80–2.20 [1.86]; Wem: males 1.80–2.20 [1.93], females 2.03–2.43 [2.15]; Lp: males 0.73–1.03 [0.86], females 0.83–1.10 [0.93]; Wp: males 1.07–1.37 [1.18], females 1.23–1.50 [1.31]; Weye: males 0.37–0.50 [0.43], females 0.40–0.53 [0.44]; IOD: males 0.47–0.67 [0.57], females 0.60–0.70 [0.63].

Holotype: Lb: 4.92 mm; Le: 3.77 mm; Weh: 1.67 mm; Wem: 2.05 mm; Lp: 0.95 mm; Wp: 1.18 mm; Weye: 0.36 mm; IOD: 0.51 mm. Antennomeres: #1(12); #2(6); #3(11); #4(13); #5(12); #6(11); #7(12); #8(10); #9(9); #10(10); #11(13).

Description: Dorsum: entire dorsum with dense, fine, light-colored pubescence. Antennae: (Figs 1, 2) color all black except antennomeres 9–11 yellow. Antennomere 1 long, swollen, 2 shortest, 3 twice as long as 2, 4 longest (usually evidently longer than 3), 5–7 subequal (only slightly shorter than 4), 9–11 subequal ca. 75% of the length of 5–7.

Antennomere (#) average lengths: Male #1(12), #2(6), #3(13), #4(13), #5(13), #6(12), #7(11), #8(10), #9(9), #10(9), #11(11). Female #1(12), #2(6), #3(12), #4(12), #5(11), #6(11), #7(10), #8(9), #9(9), #10(8), #11(12).

Head: vertex (Fig. 3) black (especially between eyes), basally lighter (orange), densely and coarsely punctured, with sparse pubescence. Antennal calli only slightly raised with distinct midfrontal sulcus between calli. Frontal ridge black, anterofrontal ridge and clypeus yellow (appearing as almost a transverse yellow band). Labrum black, apical margin with 3 long setae on each side of midline. Frontal ridge short with midfrontal sulcus apparent. Frontal ridge distinctly elevated, anterofrontal ridge protruding forward (beyond clypeus) such that clypeus appears depressed or concave (especially visible in lateral view). Mandibles dark brown. Maxillae yellow, palpi yellow, with penultimate segment usually darker, greatly swollen, apical segment sometimes darkened, much smaller, tapered apically, basal segment yellow. Ventrally head and mouthparts mostly yellow. Eyes spherical, protruding or bulging.
Body part measurements (10 males, 10 females; range in mm [average]): Lb: males 4.70–5.27 [5.02 average], females 5.1–6.16 [5.68]; Le: males 3.46–4.0 [3.77], females 3.86–4.70 [4.27]; Weh: males 1.67–1.97 [1.83], females 1.87–2.33 [2.09]; Wem: males 1.9–2.2 [2.12], females 2.33–2.96 [2.56]; Lp: males 0.87–1.0 [0.92], females 0.90–1.20 [1.0]; Wp: males 1.13–1.37 [1.26], females 1.37–1.63 [1.47]; Weye: males 0.4–0.5 [0.42], females 0.40–0.47 [0.45]; IOD: males 0.57–0.63 [0.60], females 0.60–0.73 [0.66].

Pronotum (Fig. 1): orange/brown, with apparent mid-longitudinal, hourglass-shaped (wider basally) darker orange/brown band; subquadrate in shape; basally distinctly narrower than base of elytra, width subequal to width of head including

Figs 1–6: Cerichrestus freidbergi: (1, 2) habitus, dorsal (1) and lateral (2) views; (3) head, frontal view; (4) aedeagus, left – ventral view, right – lateral view; (5) spermatheca; (6) vaginal palpi.
FURTHER NEW SPECIES OF CERICHRESTUS FROM COSTA RICA

eyes; anterior one-third with apparent transverse band of dense, yellow setae [color pattern appears to be a result of the direction and density of the pubescence]. Posterior two-thirds slanted downwards with less apparent pubescence medially and laterally. Slight but evident sublateral depressions both sub-basally and sub-apically, almost contiguous. Lateral margins somewhat straight-sided but with slight bulge outward at middle. Antero- and posterolateral angles each with a pore and long seta, anterolateral angles noticeably pointed outward from lateral margins.

Figs 7–12: Cerichrestus clarki: (7, 8) habitus, dorsal (7) and ventral (8) views; (9) head, frontal view; (10) aedeagus, left – ventral view, right – lateral view; (11) spermatheca; (12) vaginal palpi.
Scutellum: triangular and black.

Elytra: elongate-rectangular, parallel-sided; humeral calli evident but not bulging; punctuation striate with one sutural short stria and 10 distinct striae of medium coarse punctures. Color black centrally with sublateral, longitudinal, yellow/orange stripe [6 specimens with this yellow sublateral stripe melanized indicated in the material examined section], extreme lateral and epipleural areas black, extending to apex and joining narrowed medial black band. In dorsal view wide (from suture to striae 6) solid black, median, longitudinal stripe parallel-sided with lateral yellow longitudinal stripes much narrower (Figs 1, 2).

Venter: usually entirely black or dark brown, sometimes abdominal sternites lighter (yellow) with sparse, fine pubescence; front coxal cavities closed; front coxae yellow, prominent, bulging, sub-conical. Male 5th sternite only with slight medial, apical, rounded lobe, often difficult to see unless apical sternite separated from apical tergites (7 and 8), 8th tergite with apparent medial, V-shaped, apical invagination (notch), often curled ventrally over apex of 5th sternite. Female: apex of 5th sternite, 7th, 8th tergite continuously rounded or slightly pointed.

Legs (Fig. 2): fore and middle tibiae usually black dorsally, usually lighter (yellow) ventrally, rarely all yellow, hind tibia yellow; fore and middle femora yellow, usually darkened dorsally; metafemora with ventral half to two-thirds yellow, darkened dorsally. Male first foretarsal segment not swollen or enlarged. Metatarsal length more than two-thirds as great as metatibial length; apical metatarsal segment dark brown, very globosely swollen; foretarsus ca. 40–50% as long as foretibiae;
middle tarsi ca. 60% as long as middle tibiae; metatibial apex enlarged with inner (medial) lobe extended, somewhat rounded but with short teeth, with outer/lateral large prominent dark spine metatibial apex, also with ca. 6 or more serrate teeth; metatibia with dorsal margins sulcate. Metatarsi inserted subapically onto metatibiae. Tarsi dark brown.

Genitalia: Male: aedeagus, symmetrical in ventral view (Figs 4), although in ventral view it appears rotated slightly left giving a somewhat asymmetrical impression: Female: spermatheca as in Fig. 5. Vaginal palpi as in Fig. 6.

Holotype: ♂ (no bar code) Costa Rica: Prov. Heredia, F. La Selva, 3 km S Pto Viejo, 10°26'N 84°01'W \ 30 iii 1980, H.A. Hespenheide [USNM].

Distribution and phenology: Costa Rica, Heredia. All months of the year.

Host: Unknown.

DISCUSSION

Generally, the author does not like to rely only on color patterns for separating of species; however, in this unusual case there are relatively few morphological distinguishing characters (see Diagnosis above). In the author’s several decade experience with the morphological taxonomy of flea beetles (Alticinae), this is the first time where both male and female genitalia cannot be used to separate two species that are morphologically similar. However, a flea beetle colleague of mine with global knowledge has recently mentioned a similar experience with the genitalia of this group (i.e., “Monoplatini/Sphaeronychini”) (A. Konstantinov, pers. comm., 2019). Gerhard Scherer, one of the greatest flea beetle scientists of all time, said the following about Cerichrestus: “Uniform morphological characters for this genus are hard to find, so that only the yellow coloration on the thoracic sides must suffice. This yellow coloration is coupled with a uniform habitus however: flat, thin,
shagreened. The head shape, usually a very usable character in the Alticinae, is very variable here” (Scherer 1983: 14). Nevertheless, there are a few other differences such as the apparent presence of elytral calli in *C. clarki* not apparent in *C. freidbergi*, slight differences in the pronotal lateral margins, anterolateral angles, and body size (see Diagnosis above).

In the late 1980s Dr. Henry Hespenheide (UCLA) sent the author some specimens from La Selva Biological Station, which he had collected in the 1980s, as a gift. Possibly Dr. Hespenheide noticed the potential mimetic aspect of these beetles, especially because of his interest in mimicry (Hespenheide 1976). However, he only said that he was interested to know if the author could identify them. At the time the author had been working primarily on the Palearctic fauna of Alticinae and was unfamiliar with the Neotropical fauna. However, because of these few specimens from Costa Rica the author began to visit the Museum of Comparative Zoology (Harvard University) and to use the F.C. Bowditch Collection there to identify these specimens. This foray into the Neotropical Alticinae led the author to become more immersed in the Neotropical fauna to the point he joined the ALAS project by agreement to retain duplicates of even morphospecies and this led to his studying the Neotropical Alticinae extensively for almost three decades.

The author collected *Cerichrestus* at La Selva in 1995 and 2003, especially at the 5-year successional plots that is the same location at La Selva Biological Station as some of the paratypes of *C. freidbergi*, e.g., those labeled “Parcelas sucesionales” (see material examined above). In fact, the *Cerichrestus* obtained by the author then primarily originated from the 5th year (i.e., 5 years of growth) part of this successional experimental plot area (pers. observ.), indicating a “preference” for older forests versus younger-growth and/or more disturbed habitats.

** Mimicry**

The present example may be a case of Batesian mimicry even though virtually nothing is known about this specific system. It seems to be part of a “mimicry ring” where several species of different insect families (possibly primarily beetles) appear to have the same or very similar external color patterns. Part of the problem of determining whether this is Batesian or Müllerian mimicry is that we do not know anything about the biology of these species and especially which might be distasteful to predators. There are a nice discussion and illustrations of mimicry in Wickler (1968), a review of the literature about mimicry in insects (Rettenmeyer 1970), and general classifications of mimicry (Pasteur 1982).

In the case of *Cerichrestus* the external colors of all species are normally some combination of yellow/red/orange and black, an aspect critical to Batesian mimicry (Rettenmeyer 1970). Here it is assumed that all species of *Cerichrestus* are Batesian mimics, but, of course, there is always a possibility that such a mimicry ring is Müllerian mimicry, especially since we know nothing about the palatability of these insect, their presumed models, or even for the species of *Cerichrestus*. Another basic tenant of Batesian mimicry is that the model and the mimics must live in the
same area at the same time (Rettenmeyer 1970), which was the case at the sites in Choco, Colombia. Rettenmeyer (1970) also points out that in some cases of mimicry the position of live specimens in nature as well as their behavior may be important factors in mimicry, and we have no idea if these factors are involved in the Cerichrestus mimicry rings in Colombia or elsewhere. In Wickler (1968, fig. 2) there are examples of chrysomelids involved in Müllerian mimicry rings with coccinellids, both unpalatable, and roaches that are palatable. Wickler (1968, fig. 19) illustrates mimicry rings (presumably Müllerian) involving species of Lycidae with 4 or 5 similarly appearing insects from several orders, this is somewhat similar to the situation the author encountered in Choco, Colombia, in 1985. During the author’s visit to Choco he was able to collect a few specimens of Cerichrestus, only one species of this genus (C. apicalis) had previously been recorded from that country. While collecting there it became apparent that there was some sort of mimicry ring involving species of several other subfamilies of the Chrysomelidae (e.g., Galerucinae sensu stricto or Galerucini auctorum, Clytrinae, etc.) that had a “typical” orange and black color pattern to other mimicry rings known around the world (see Wickler 1968), similar to the color pattern of certain other Coleoptera, e.g., Lycidae. Of course, also because virtually nothing is known about the food plants of any of these Colombian taxa, it is not possible to presume which members of such a mimicry ring are distasteful. At this site in Choco, other species of Cerichrestus (one species, provisionally determined as C. ?allardi) were collected that are quite similar to species of Lycidae (Coleoptera) (see Figs 14, 15). At the same site an undescribed species of Cerichrestus was collected and within a few days a species of Lucidota Laporte (Lamyridae: Coleoptera) (M. Branham, pers. comm., 2019) (see Figs 16, 17). These are good examples of the kind of mimicry ring in which presumably all species of Cerichrestus are involved.

Many species of Lycidae are well-known to be models in various mimicry rings because of their distastefulness due to acetylenic acid/lycidic acid that is the probable toxic chemical in Calopteron reticulatum (Fabricius, 1775) (Eisner et al. 2008). The lycid pertinent to this study (Fig. 15, collected by the author together with a presumed mimic—C. ?allardi (Fig. 14)—in Choco, Colombia) has been tentatively identified as a species (perhaps undescribed) of Cartagonum Pic or even an undescribed species of Calopteron Laporte (the latter genus apparently being taxonomically a mess) (V. Ferreira, pers. comm., 2019), and it could very well be distasteful and even related to C. reticulatum.

Polymorphism

Among the examined material for C. freidbergi six specimens (four males and two females) of the 103 specimens listed, or less than 6 %, are apparently melanistic, in that the normal elytral sublateral, yellow/orange, longitudinal stripe is dark (black), i.e. the entire elytra appear black. There are several possible explanations for this. These apparent melanistic specimens basically were collected in the same locations and seasons as normally patterned C. freidbergi; therefore, this color difference is
Figs 14–17: (14) *Cerichrestus* ?allardi (Duvivier), mimic, habitus, dorsal view, Colombia, Choco; (15) Lycidae (*Cartagonum* sp.), mimic, habitus, dorsal view, Colombia, Choco; (16) *Cerichrestus* sp., mimic, habitus, dorsal view; (17) Lampyridae (*Lucidota* sp.), mimic, habitus, dorsal view.
not seasonal. Polymorphism in some lepidopteran mimicry is important (Wickler 1968; Rettenmeyer 1970); however, it is certainly not clear that these melanicos of *C. freidbergi* are true polymorphs that might indicate a tendency towards an evolutionary shift in the color pattern. Although many Alticinae have quite variable color patterns (Furth 2017), in the case of mimicry such polymorphism or variability could also be disadvantageous if either the model or other mimics in the ring have a relatively constant pattern. Therefore, the consistent color pattern differences, especially dorsally, between *C. freidbergi* and *C. clarki* may have even more significance. Of course, it is possible that the darkened elytral color of these six specimens may have been caused by some different dietary consumption. It is also possible that during the process of trapping and killing these specimens they were exposed to some chemicals that darkened the normally yellow elytral stripes. Additionally, there may have been conditions during the processing of these specimens, or even afterwards while drying, that caused these elytral areas to change color chemically, such as the greasing that often occurs in Lepidoptera, beetles, and other insects stored in different conditions.

Example of little-known biodiversity

Although the lack of knowledge about *Cerichrestus* is by no means unusual, it is a good example of a situation that is not so well-known, especially to non-entomological taxonomists. Even though there have until now been 16 described species in this genus, except for a few checklists reiterating their distribution by country (e.g., Heikertinger & Csiki 1940; Seeno & Wilcox 1982; Furth & Savini 1996), essentially nothing other than the original description has been written about them; therefore, *Cerichrestus* is a good example of how little is actually known about much/most animal biodiversity! In fact, without trying to make an entire research project from it, a wild guess might be that for a majority of the described species of animals, i.e., insects, especially beetles (Coleoptera) that is close to 25% of the known species of animals, it may be that nothing more is known than their scientific name. Additionally, even those where a few papers have cited these scientific names in checklists, nomenclatural changes, determination keys, etc., we know nothing about their biology, their true distribution/biogeography, ecology, phylogeny, genetics, etc. To speculate further, this ignorance may also be apart of the misunderstanding by non-entomologists about how difficult it is to assign names to insect taxa, leading to restrictive collecting regulations, application of conservation practices, checklists or surveys of geographical areas or ecological subjects, administrator’s requests, etc., because it can take insect taxonomists orders of magnitude more time to accomplish such requested information.

ACKNOWLEDGEMENTS

I am very grateful to Dr. Alexander Konstantinov (Systematic Entomology Laboratory, USDA, Washington, DC, USA) for taking photographs of the genitalia of *C. clarki* and *C. freidbergi*. I am also thankful to Ms. Karolyn Darrow (Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA) for dorsal habitus photos of *Cerichrestus clarki* syntypes.
Cerichestus allardi mimic and Cartagonum (Lycidae) model, and Cerichestus sp. mimic and Lucidota sp. (Lampyridae) model, all from Choco, Colombia. I am also very much indebted to Dr. Angel Solis of the Instituto Nacional de Biodiversidad (INBio) in San Jose, Costa Rica for the loan of specimens. Dr. Jack Longino (University of Utah, USA) encouraged and allowed me to participate in the ALAS project that was supported by National Science Foundation grants BSR-9025024, DEB-9401069, DEB-9706976, and DEB-0072702. I also very much appreciate help from Dr. Marc Branham (University of Florida, Gainesville, USA) to identify the Lampyridae specimen from Colombia as Lucidota sp. and Mr. Vinicius S. Ferreira (University of Montana, USA) for the identification of the lycid (Cartagonum sp.) from Colombia. I also thank Dr. M. Schmitt and an anonymous referee for their useful comments.

REFERENCES

———. 2017. Recent advances in the knowledge of Mexican Alticinae (Coleoptera: Chrysomelidae). ZooKeys 720: 23–46. https://doi.org/10.3897/zookeys.720.17790

